
1. INTRODUCTION

Suppose we have a distribution of stars, , where  isf (✘, ✎, V) ✎
the ecliptic latitude,  is the ecliptic longitude, V is the visual✘
magnitude, and f has units of stars per square degree per mag-
nitude.  In order to minimize the errors of the astrometric pa-
rameters (position, parallax, proper motion), two distributions
each must be both as dense and as uniform as possible: the
density of observations on the sky, and the angle at which ob-
servations are made (i.e., viewport scan direction) for any
given star at a given location on the sky.  We will call this lat-
ter angle the scan angle.  The distribution of observation den-
sity and the distribution of scan angle of a spin-stabilized scan-
ning spacecraft with n observation ports aimed perpendicularly
to the spin axis, which is precessing around the nominal Sun
direction, will depend on the angle (called the Sun angle, or,
more precisely, the precession cone angle) between the spin
axis and the nominal Sun direction, ; the rate of change of✫
the precession phase ; the rate of change of the spin phase ;✩ ✕
and the directions  of the observation ports as a function(✘,✎)
of time.  The latter can be characterized by the spin phase of
the satellite, , relative, say, to the ascending node of the✕
spacecraft equator, and the angle between observation ports, ✏
(called the basic angle).  The observation density will also de-
pend on the details of the star distribution , as well asf (✘, ✎, V)
the phase of the satellite orbit around the Sun (i.e., the time of
year), since the distribution of stars on the sky, roughly sym-
metric with respect to Galactic coordinates, is skewed with re-
spect to ecliptic coordinates.  

We choose in this study to use ecliptic coordinates, since the
motion of the spacecraft spin vector, and hence the viewport
direction and scan angle, are all most naturally expressed in
that frame.  Consideration of the effects of a nonuniform stel-
lar density distribution  is postponed to a future study.f (✘, ✎, V)
This work will concentrate on the density distribution of obser-
vations on the sky, the distribution of scan angle on the sky,
and the approximate effects of inhomogeneities of these distri-
butions on the errors of the five standard astrometric parame-
ters (position, proper motion, and parallax).

To lowest order, the motion of the spin vector is a smooth
precession around the nominal Sun direction.  In actuality, the
precession cone “wobbles” with respect to the Sun, as the Sun
tries to drift away from the precession cone symmetry axis due
to Earth’s orbital motion.  Solar radiation torques (acting pri-
marily on an effectively conical but nearly flat Sun shield)
counter this drift, moving the precession cone axis back to-
wards the instantaneous direction, which is constantly chang-
ing due to orbital motion, of the Sun (e.g. Slabinsky, 1998;
Reasenberg, 1999; Lim, 2000).  The result is to cause the pre-
cession cone symmetry axis to track the Sun direction in an
epicyclic fashion.  Here we ignore this and other, smaller, per-
turbations on the gross motions of the spacecraft spin vector.

In previous work, Reasenberg (1997) considered the distri-
butions of observation density and of scan angle, averaging
over ecliptic longitude.  Based on this initial foray into the
problem, he concluded from histograms of the observation
density and scan angle (averaged over ecliptic longitude) that
variation of the precession cone angle (in the range 35 to 55
degrees) does not appear to cause drastic changes in the distri-
butions.  The corresponding implication is that the precession
cone angle may perhaps be chosen in the range 35-55 degrees
without large effects on mission accuracies, though that of
course remains to be addressed explicitly.  

As part of a mission simulation (duration: 0.5 yr, number of
stars: 450) for HIPPARCOS, Høyer et al. (1981) included a
very brief look at the relative changes in full-sky-averaged
mission accuracies of positions in ecliptic coordinates for three
values (20°, 30°, 40°) of the precession cone angle (which
Høyer et al. referred to as the “revolving angle”).  The Høyer
simulation consisted of statistically generated observations
coupled with nonlinear weighted least squares parameter esti-
mation.  They found ratios of the sky-averaged mean errors in 

 to be 1.13 : 1.00 : 0.97, and of the sky-averaged mean errors✎
in  to be 1.70 : 1.00 : 0.76, at the three respective values of✘
precession cone angle.  As will be shown in the present study,
averaging over the full sky masks important effects and is
therefore at best a questionable metric of the two distributions.
In an Appendix to their paper, Høyer et al. also performed an
analytical analysis in which they averaged over scan angle and
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spin phase (designated  in the present study).  Comparison✕
with their simulation results showed a “marked” (their word)
difference (0.92 : 1.00 : 1.09 and 1.20 : 1.00 : 0.90, respec-
tively), which they were unable to explain.  The difference in
behavior between the Høyer et al. analytical approach and
their numerical simulations is probably due to the averaging
they performed in order to make the analytical problem tracta-
ble.  Their numerical simulations did not incorporate such av-
eraging.  In any case, the simulation results are clear: one does
better with larger Sun angles, at least when averaging the er-
rors over the entire sky.  Neither Reasenberg nor Høyer et al.
considered the effects on the two distributions of changing the
precession rate.

In this series of papers, I examine the distributions in greater
depth and in more quantitative detail, as well as consider the
effects of changing both the precession cone angle and the pre-
cession rate, all without performing any statistical averaging of
quantities.  This first paper in the series reviews the relevant
geometry of the problem.  We specify the viewport coordi-
nates in terms of ecliptic coordinates, and we determine the
scan angle as a function of the precession cone angle and
ecliptic coordinates.  We also specify the spin and precession
phase angles as functions of the precession cone angle and
ecliptic coordinates.  These will be useful throughout the rest
of the study.  In the second paper, we look in detail at the in-
scan, cross-scan, and field rotation rates as functions of posi-
tion on the sky, in order to understand the form and behavior
of the distributions found in the simulations of the third and
fourth papers.  The third paper presents the distributions of
both observation density and scan angle that result from obser-
vation time series.  The purpose is to develop an understanding
of the characteristics of the distributions and of their behavior
with changes in precession cone angle and precession rate.
The fourth paper addresses via simulated observations the ef-
fects of the distribution inhomogeneities on mission accuracies
of the classical astrometric parameters.  The main results of
this study are contained in the third and especially the fourth
papers.  

This work is broken up into four papers for the sake of con-
venience, for two reasons.  First, it provides some relief to the
reader, since the divisions fall along natural breaks in the de-
velopment.  Second, much of the computational work is per-
formed in the Maple computer algebra system environment,
with the consequence that computer hardware limitations make
it impossible to contain the entire work in a single Maple
document.  The four papers are not stand-alone in nature but
are meant to be read in sequence.

2. SPHERICAL GEOMETRY OF THE PROBLEM

2.1. Transformation between External and Body Frames

Consider two Cartesian frames of reference: (1) a frame 
 fixed to the spacecraft body, with the z axis along the[x, y, z]

spacecraft symmetry axis (i.e., the spin axis) and the y axis
piercing the focal plane of viewport 1, and (2) an external
frame .  The external frame need not be inertial.  The[X, Y, Z]
two frames can be related to each other via Euler angles, one
convenient set of which is shown in Figure 1.  Viewport 2
trails viewport 1 by an angle, , the so-called basic angle.✏

To transform from the external frame to the body frame, first
rotate around the Z axis by , then around X' by  (the inclina-✩ ✫
tion angle, aka the Sun angle or, more accurately, the preces-
sion cone angle), then around Z'' by , the “fast” Euler angle.✕
One may easily develop the resulting coordinate transforma-
tion matrix, which we do here explicitly for reference.

Rotate the external frame coordinates ccw around the Z axis
(cf. Figure 1):

(1)RZ(✩) =
cos✩ sin✩ 0
− sin✩ cos✩ 0

0 0 1

Next, a matrix to rotate ccw around the X' axis:

(2)RX(✫) =
1 0 0
0 cos✫ sin✫
0 −sin✫ cos✫

Then a matrix to rotate ccw around the Z'' axis:

(3)RZ(✕) =
cos ✕ sin ✕ 0
−sin ✕ cos ✕ 0

0 0 1

Now combine the rotations in this order into a single rotation
matrix.  The resulting coordinate transformation is

(4)
x
y
z

= R (✩,✫,✕)
X
Y
Z

where
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Figure 1 — The body frame  and the external frame , con-[x, y, z] [X, Y, Z]
nected by the Euler angles .  The “fast” angle, or spin phase, is ;  the[✕,✫,✩] ✕
precession phase is ; and the precession cone angle, or nominal Sun angle, is ✩

.  The two viewports are separated by the “basic angle”, .✫ ✏
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Using eqs. (4) and (5), we can transform coordinates from
the external frame  to the body frame  and vice[X, Y, Z] [x, y, z]
versa.  We can rotate the observing plane so that the y axis
pierces viewport 2 instead of viewport 1 by substituting ✕ − ✏
in place of .  Transformations between the external frame and✕
other external frames (e.g., equatorial coordinates, galactic co-
ordinates, and so on) can be similarly constructed.

2.2. Viewport Ecliptic Coordinates and the Scan Angle as
Functions of the Euler Angles

We are interested in the distribution on the sky of observa-
tions taken through the spacecraft viewports, as well as the dis-
tribution of the scan angle q.  Since the Sun plays a pervasive
role throughout, rotating ecliptic coordinates such that the
nominal Sun direction is along the Z axis are a natural choice
for the external frame.1

In Figure 2,  are the ecliptic longitude and latitude of(✘,✎)
the two spacecraft viewports, and  is the ecliptic longitude✘?
of the Sun.  In this figure the spacecraft spin vector points be-
low the XZ plane.  Elsewhere (Murison, 2000a), I show how
the large spherical triangle composed of smaller triangles A
and B yield the ecliptic coordinates of the leading viewport,

(6)sin✎1 = −sin✩ sin✕ + cos✩ cos ✕ cos✫

cos✘1 =
cos ✕ sin✫ cos ✘? + (sin ✕ cos✩ + cos✕ sin✩ cos✫) sin ✘?

1 − (cos✩ cos✕ cos✫ − sin✩ sin ✕)2

(7)

sin ✘1 =
cos ✕ sin✫ sin ✘? − (sin ✕ cos✩ + cos ✕ sin✩ cos✫) cos✘?

1 − (cos✩ cos✕ cos✫ − sin ✩ sin ✕)2

(8)

where  is the ecliptic longitude of the Sun, and  are✘? (✕,✫,✩)
Euler angles connecting the spacecraft body frame to the eclip-
tic frame.  These Euler angles are defined in Figure 1, as well
as in Murison (2000a).  For the remainder of section 2, we
drop the explicit subscript designation of viewport 1 and write 

,  for notational simplicity.  ✘ ✎
The distribution of ecliptic coordinates  of the view-(✘,✎)

ports on the sky resulting from a sequential series of observa-
tions is only one part of the story.  The other crucial quantity is
the distribution of the auxiliary angle q (often called the paral-
lactic angle) in spherical triangle A in Figure 2.  This is the an-
gle of the instantaneous scan direction with respect to a merid-
ian passing through the ecliptic north pole and a star with coor-
dinates .  We shall call this angle the scan angle.  From(✘,✎)
the large spherical triangle composed of the triangles A and B,
we write (referring to )q1

(9)sin& = −sin ✎ sin✕ − cos✎ cos ✕ cos q

(10)cos ✎ sin q = cos& sin✫

Hence, using (6), we obtain the result

(11)cos q = −
(cos& cos✕ cos✫ − sin& sin ✕) sin ✕ + sin&

1 − (cos& cos ✕ cos✫ − sin& sin ✕)2 sin✕

(12)sin q =
cos& sin✫

1 − (cos& cos✕ cos✫ − sin& sin ✕)2

Notice that the scan angle q is independent of the Sun’s longi-
tude, .  The distribution of q as a function of spin phase ✘? ✕
and precession phase  is therefore static (we are ignoring✩
variations of the precession cone angle ).✫

2.3. Scan Angle as a Function of Precession Cone Angle and
Ecliptic Coordinates

From the large spherical triangle A+B, we write two more
relations:

(13)sin q cos ✕ = cos(✘ − ✘? ) cos&

(5)R (✩,✫, ✕) =
cos ✕ cos✩ − sin ✕ sin✩ cos✫ cos ✕ sin✩ + sin✕ cos✩ cos✫ sin✕ sin✫

−sin ✕ cos✩ − cos ✕ sin✩ cos✫ −sin ✕ sin✩ + cos✕ cos✩ cos✫ cos✕ sin✫
sin✩ sin✫ −cos✩ sin✫ cos✫
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1 The external frame Z axis points towards the nominal direction of the Sun.  It is more accurate to say that the Z axis is coincident with the axis about which the
spacecraft spin axis precesses.  We will call this the “precession cone axis”, or the precession axis.  Due to the orbital motion of the Earth, the Sun will move
away from the precession axis direction.  But the resulting solar radiation torque imbalance acts to cause the precession axis to try and follow the Sun.  We call
this mechanism “Sun tracking”.  The net effect is, to lowest order, a guiding center motion: the spin axis circulates around the precession axis (the guiding
center), which in turn is slowly moving to follow the Sun.  Hence, the angle between the instantaneous direction of the Sun and the spin axis (the instantaneous
Sun angle) will vary with an amplitude of several degrees (in the case of FAME), but the precession cone angle  will remain relatively constant.✫

Figure 2 — Spherical geometry of the two viewports and the symmetry axis
spin vector, in the ecliptic coordinate frame
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Solving (15) and (16), we can write q as a function of position
on the sky , the precession cone angle , and the solar(✘,✎) ✫
longitude .  We obtain✘?

(17)sin q = Q

(18)

cos q =
[sin2(✘ − ✘? ) − cos2(✘ − ✘? ) sin2✎] cos✫

sin(✘ − ✘? )[1 − cos2(✘ − ✘? ) cos2✎]

+
[cos2(✘ − ✘? ) − sin2✫] cos(✘ − ✘? ) sin ✎
Q sin(✘ − ✘? )[1 − cos2(✘ − ✘? ) cos2✎]

where Q is the pair of quadratic solutions

(19)

Q =
cos(✘ − ✘? ) cos✫ sin ✎
1 − cos2(✘ − ✘? ) cos2✎

!
sin(✘ − ✘?) sin2✫ − cos2(✘ − ✘? ) cos2✎

1 − cos2(✘ − ✘? ) cos2✎

We see that, given a star at a position  relative to the(✘ − ✘?, ✎)
Sun, then for a precession cone angle  one can vary  and ✫ ✕ ✩
until the star is in the field of view of viewport 1 (and likewise
for viewport 2).  This will in general occur for two values of 

, with two corresponding values of scan angle q.  We are(✕,✩)
now in a position to specify the scan angle as a function of po-
sition on the sky, for a given precession cone angle and solar
longitude.  

The actual scan angle as defined is not quite the angle q that
we’ve determined in eqs. (17)-(19).  In addition to motion of
the viewport across the sky due to the fast Euler angle rate 

, there is a small motion due to the precession , andd✕/dt d✩/dt
even smaller motions due to the orbit of the Earth, , andd✘?/dt
to perturbations in the precession cone angle, .  The larg-d✫/dt
est of these, , causes the angular velocity vector in thed✩/dt
spacecraft body frame to circle the spacecraft symmetry axis
with a period equal to the precession period and an angular ra-

dius r determined from simple geometry by tan r =
d✩/dt
d✕/dt

sin✫

.  However, for a precession period in the range 20-30 days, a
precession cone angle , and a spin period of 40 min-✫ = 45 deg
utes, the angular radius of the angular velocity vector from the
symmetry axis spans 135-203 arc seconds; this is the dominant
error of approximating the actual scan angle with q as deter-
mined from eqs. (17)-(19).  Hence, for purposes of determin-
ing distributions of the scan angle, this and smaller terms are
ignorable at a level of , and our “scan angle” q is quite10−4

suitable.

For each set of values  and , there will be a region of the✫ ✘?
sky that is visible, corresponding to a  range of the preces-2✜
sion and spin phase angles.  The boundaries of this allowed re-
gion are determined by the locations where the square root
term in Q becomes imaginary.  There are two resulting inac-
cessible “holes” in the Sun and anti-Sun directions, corre-
sponding to the boundaries of the precession cone.  The angu-
lar radius of the holes, from simple geometry, is , which✜

2 −✫
may also be seen by setting  in ✘ = ✘?

 from the square root term, leaving sin2✫ − cos2(✘ − ✘? ) cos2✎
.✜

2 − ✎ = !✫
Figure 3 shows, on a sinusoidal projection of the sky, the

value of the square root term as a function of  and ✎
, for , and with black representing zero.  The✁✘ = ✘ − ✘? ✫ = ✜

4

red circles are the boundaries of the precession cone holes.
The precession cone holes occupy a solid angle that is a

function of the precession cone angle.  Consider an infinitesi-
mal solid angle element , where  isd✡ = sin u du d✩ u = ✜

2 −✫
the polar angle.  Integrating over  and ,✩ = 0..2✜ u = 0.. ✜2 −✫
we obtain the solid angle occupied by the two holes,

(20)
✡holes

4✜ = 1 − sin✫

Figure 4 shows the fraction of the sky occupied by the two pre-
cession cone holes as the precession cone angle varies between
36° and 54°.

Figure 5 illustrates the scan angle as a function of ecliptic
latitude and difference in ecliptic longitude from that of the
Sun, for a precession cone angle of 45 degrees.  Again, a sinu-
soidal map projection in  is used.  The blue and yellow(✁✘,✎)
surfaces correspond to the two solutions represented by eqs.

(15)[sin2(✘ − ✘? ) − cos2(✘ − ✘? ) sin2✎] sin2q − 2 sin ✎ cos(✘ − ✘? ) sin(✘ − ✘? ) cos q sin q − sin2✫ + cos2(✘ − ✘? ) = 0

and

(16)[cos2(✘ − ✘? ) − sin2(✘ − ✘? )] sin2q + sin2✫ − cos2(✘ − ✘? ) sin ✎ − [cos(✘ − ✘? ) cos✫ cos2✎ − cos(✘ − ✘? ) sin(✘ − ✘? )(1 + sin2✎) cos q] sin q = 0

(14)−sin ✕ = sin ✎ sin& + cos✎ cos& sin(✘ − ✘? )

Equations (6), (9), (10), (13), and (14) are a set of five equa-
tions in five variables.  These are not completely independent,
since eqs. (10) and (13) from the law of sines have two sides
and two angles in common with the other three equations from 

the law of cosines.
Eliminate  and  from the five equations to obtain the re-✕ ✩

duced set
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Figure 3 — Square root term of Q as a function of position on the sky.
Black regions correspond to precession cone holes, the boundaries of which
are indicated by the red curves.  Map projection is a sinusoidal equal-area pro-
jection (Murison, 2000b).



which has the solutions

(28)

cos& =
cos(✘ − ✘? ) cos✫ sin ✎ cos✎

[1 − cos2(✘ − ✘? ) cos2✎] sin✫

!
sin(✘ − ✘? ) sin2✫ − cos2(✘ − ✘? ) cos2✎ cos✎

[1 − cos2(✘ − ✘? ) cos2✎] sin✫

(27)2
cos(✘ − ✘? ) cos& cos✫ sin✎

sin2(✘ − ✘? ) cos ✎
− 1 +

sin2✎
sin2(✘ − ✘? ) cos2✎

sin✫ cos2& −
cos2(✘ − ✘? ) cos2✫
sin2(✘ − ✘? ) sin✫

+ sin✫ = 0

(17)-(19).  The holes due to the precession cone in the Sun and
anti-Sun directions, shown in black, are readily apparent.  The
faux discontinuities near  and  are✁✘ j !130 deg ✁✘ j !40 deg
merely due to wrapping of q from -180 to 180 degrees.  There
are real discontinuities at .  As seen from eq. (19), the✁✘ = 0,✜
two solutions become identical at the discontinuities (note in
the Figure the continuation of contour lines across the disconti-
nuities).  Hence, the surfaces match across the discontinuities
to produce two continuous smoothly deformed sheets (except
precisely at the infinitesimal discontinuities).  The effect of de-
creasing the precession cone angle is to increase the radius of
the precession cone holes by the same amount and to increase
the fraction of the sky covered by the holes according to eq.
(20).

2.4. Spin and Precession Phase as Functions of Precession
Cone Angle and Ecliptic Coordinates

For reference, it will be useful to express  and  as func-✕ ✩
tions of position on the sky (ecliptic coordinates) and of the
precession cone angle .  Eqs. (6) and (14) are independent of✫
the scan angle q.  A third equation that does not explicitly in-
volve q is

(21)cos ✕ sin✫ = cos(✘ − ✘? ) cos ✎

This equation follows directly from the triangle A+B, or it may
be derived by eliminating q from eqs. (10) and (13).  We
therefore have the three independent equations (6), (14), and
(21).  

To solve for the four quantities , , , and ,sin✕ cos ✕ sin✩ cos✩
we need four independent equations.  Fortunately, we can
make use of the identity  as follows.  Substitutesin2 + cos2 = 1
(14) into (6) to get

(22)cos ✕ =
sin ✎ cos& − sin(✘ − ✘? ) cos✎ sin&

cos✫

Substitute (22) into (21) to obtain the equation

[sin ✎ cos& − sin(✘ − ✘? ) cos ✎ sin&] sin✫ = cos(✘ − ✘? ) cos ✎ cos✫
(23)

which is independent of .  Now substitute (21) into (6), get-✕
ting

(24)sin✕ =
cos& cos✫ cos(✘ − ✘? ) cos ✎ − sin✫ sin✎

sin& sin✫

Plug this back into (14) to get the equation

(25)
sin✫ sin✎ − cos& cos✫ cos(✘ − ✘? ) cos✎

= [sin& sin✎ + cos& sin(✘ − ✘? ) cos✎] sin& sin✫

which is also independent of .  Eqs. (23) and (25) may now✕
be solved for  and .  From (23), sin✩ cos✩

(26)sin& =
sin ✎ cos&

sin(✘ − ✘? ) cos ✎
−

cos(✘ − ✘? ) cos✫
sin(✘ − ✘? ) sin✫

Then (25) becomes
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Figure 4 — Areal fraction of the sky occupied by the precession cone holes,
as a function of precession cone angle in degrees.

Figure 5 — Scan angle as a function of position on the sky.  Map projection
is a sinusoidal equal-area projection (Murison, 2000b).



Recalling eq. (19), we write this as

(29)cos& =
Q cos✎
sin✫

Then eq. (26) becomes

(30)sin& =
Q sin✎ − cos(✘ − ✘? ) cos✫

sin(✘ − ✘? ) sin✫

Eqs. (29) and (30) give  and  as functions only ofcos✩ sin✩
ecliptic coordinates and the precession cone angle.  

Finally, substituting (29) and (30) into (22) and (24), we ob-
tain  and  as functions of ecliptic coordinates and thecos ✕ sin✕
precession cone angle:

(31)cos✕ =
cos(✘ − ✘? ) cos ✎

sin✫

  (32)sin ✕ =
[Q cos2✎ cos(✘ −✘? ) cos✫ − sin2✫ sin ✎] sin(✘ − ✘? )

[Q sin ✎ − cos(✘ − ✘? ) cos✫] sin✫

Due to Q being multivalued,  and  will also exhibit preces-✕ ✩
sion cone holes.

Figure 6 shows  as a function of ecliptic coordinates, while✕
Figure 7 shows .  As with the scan angle, the two solution✩
surfaces for both  and  smoothly join at the individual sur-✕ ✩
face discontinuities.

3. RESULTS FOR VIEWPORT 2

In this section we state for reference the results for viewport 2
explicitly.  As previously mentioned, for viewport 2 we rotate
the observing plane by the basic angle , so that the body✏
frame y axis pierces viewport 2.  Hence, we need only substi-
tute  in place of  in the viewport 1 equations.  The eclip-✕ − ✏ ✕
tic coordinates of the second (trailing) viewport are (Murison,
2000a)

(33)sin✎2 = −sin✩ sin(✕ − ✏) + cos✩ cos(✕ − ✏) cos✫

cos ✘2 =
cos(✕ − ✏) sin✫ cos ✘?

1 − [cos✩ cos(✕ − ✏) cos✫ − sin ✩ sin(✕ − ✏)]2

+
[sin(✕ − ✏) cos✩ + cos(✕ − ✏) sin✩ cos✫] sin ✘?

1 − [cos✩ cos(✕ − ✏) cos✫ − sin✩ sin(✕ − ✏)]2

(34)

sin ✘2 =
sin(✕ − ✏) sin✫ sin ✘?

1 − [cos✩ cos(✕ − ✏) cos✫ − sin✩ sin(✕ − ✏)]2

+
[cos✫ sin(✕ − ✏) sin& − cos(✕ − ✏) cos&] cos✘?

1 − [cos✩ cos(✕ − ✏) cos✫ − sin✩ sin(✕ − ✏)]2

(35)

Equations (11) and (12) become

cos q2 =
[sin& cos(✕ − ✏) + cos& sin(✕ − ✏) cos✫] cos(✕ − ✏) − sin&

1 − (sin& cos(✕ − ✏) + cos& sin(✕ − ✏) cos✫)2 sin(✕ − ✏)
(36)

(37)sin q2 =
cos& sin✫

1 − (sin& cos(✕ − ✏) + cos& sin(✕ − ✏) cos✫)2

Finally, eqs. (17)-(19) become

(38)sin q2 = Q2

(39)

cos q2 =
[sin2(✘2 − ✘? ) − cos2(✘2 − ✘? ) sin2✎2 ] cos✫

sin(✘2 − ✘? )[1 − cos2(✘2 − ✘? ) cos2✎2 ]

+
[cos2(✘2 − ✘? ) − sin2✫] cos(✘2 − ✘? ) sin ✎2

Q 2 sin(✘2 − ✘? )[1 − cos2(✘2 − ✘? ) cos2✎2 ]
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Figure 6 — Spin phase angle as a function of position on the sky.  Map
projection is a sinusoidal equal-area projection (Murison, 2000b).

Figure 7 — Precession phase angle as a function of position on the sky.
Map projection is a sinusoidal equal-area projection (Murison, 2000b).
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(40)

Q 2 =
cos(✘2 −✘? ) cos✫ sin ✎2

1 − cos2(✘2 − ✘? ) cos2✎2

!
sin(✘2 − ✘?) sin2✫ − cos2(✘2 − ✘? ) cos2✎2

1 − cos2(✘2 − ✘? ) cos2✎2

4. CONCLUSIONS

Conclusions resulting from work presented in this paper may
be summarized as follows:

• The scan angle and the ecliptic coordinates of the
spacecraft viewports are easily expressed as functions
of the spacecraft attitude, as realized in the form of
Euler angles that connect the spacecraft coordinate
frame to the external ecliptic frame.  These functions
are not terribly complicated, but neither are they trivial.

• The scan angle can be written as a function only of
ecliptic coordinates, the ecliptic longitude of the Sun,
and the precession cone angle.  A characteristic of the
solution is that it is multivalued.  Specifically, there are
in general two solution surfaces, corresponding to two
attitude configurations that yield two scan angle values
at the same location on the sky (in a frame rotating such
that the Sun appears fixed on the sky).

• A pair of quadratic solution terms identified in the de-
velopment of the scan angle as a function of ecliptic co-
ordinates is found to be a common factor in all of the
interesting coordinate transformations considered here.
Two underlying themes result, both of which have an
impact on the observation density and scan angle distri-
butions.  First, the solution surfaces that appear
throughout the development contain discontinuities,
and the separate surfaces join smoothly at those discon-
tinuities.  That is, a bug crawling on one solution sur-
face and encountering a discontinuity can smoothly step
across the discontinuity onto the other solution surface,

as required by the physical problem.  Second, the in-
stantaneous Sun and anti-Sun directions are surrounded
by precession cone “holes”, inside the boundaries of
which the quadratic solution terms become imaginary.
These holes owe their existence to the simple geometric
facts that 1) the spacecraft spin axis precesses around
the nominal Sun and anti-Sun directions and 2) the
viewport directions are perpendicular to the spin axis.
The behavior of the quadratic solution terms is just the
mathematical manifestation of these geometric facts.
Not unexpectedly, the existence of the precession cone
holes plays a fundamental role in the observation den-
sity and scan angle distributions.  Illustrations of the so-
lution surfaces render the surface topology and their
physical origins clear.

• The precession cone hole radius is equal to ,✜
2 −✫

where  is the precession cone angle.  The smaller the✫
precession cone angle, the larger the expected effects of
the holes on the distributions.  The fraction of the sky
occupied by the two holes is .1 − sin✫

• Finally, the spin and precession phase angles are ex-
pressed as functions of ecliptic coordinates, ecliptic
longitude of the Sun, and precession cone angle.  These
equations are useful in simulations which will be pre-
sented in subsequent papers in this series (Murison,
2000c-e).  The corresponding “surfaces” are also
shown; they exhibit the topology determined by the un-
derlying quadratic solution factors.
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